其他
中国农业银行数据指标体系建设与运营实战
在传统的指标管理中,指标分散在各业务条线的分析系统中,这种方式存在管理不统一、口径不统一、流程不统一等各种问题。
在构建指标体系的实践中,指标建设团队设计了一套以维度建模思想为理论基础的标准定义。通过这种标准定义,明确了指标口径,消除了数据歧义。
下面从维度和度量、指标分类两个方面介绍这种标准定义。
1、维度和度量
维度是人们观察事物的角度,反映业务的一类属性。在农业银行的指标体系中,公共维度包括时间、机构、币种,个性维度包括渠道、客群、产品、行业、介质、区间、风险分类等。维度类型及举例
度量是在维度组合下的数值,即指标统计的值。农业银行的指标体系包含以下度量类型。
度量类型及指标举例
除此之外,指标体系中各指标还包含了日增量、月增量、年增量、比同期、年日均值等多种度量,供业务人员对指标数据进行统计分析。
2、原子指标、派生指标、组合指标农业银行的的指标主要分为3种,分别是原子指标、派生指标及组合指标,定义如下表所示:
指标分类
在指标加工前,需要按照指标标准定义对指标进行分类,并将其拆解成维度和度量。以个人e贷贷款不良率和信用卡客户掌银活跃率为例,如下图所示。
指标标准定义举例(个人e贷贷款不良率)
下面将从需求、开发、运营这三个过程管理角度介绍指标体系的建设和管理过程,包括指标需求对接、口径定义、自助加工、发布、监测、后评价和下线的全生命周期管理。
1、需求分析随着农业银行数字化转型的不断深入,指标加工需求出现爆发式增长,在需求环节加强对指标的统筹和管控变得越来越重要,而充分的业务调研是需求统筹和管控的基础。
首先需要将描述性的业务需求转换为标准的需求模板,实现需求的标准化,然后再定义指标的元信息。标准化的需求和指标的元信息定义包含了基本属性、业务属性、技术属性等。
基本属性主要关注指标的名称和编码等,业务属性主要关注指标的业务定义,业务条线等,技术属性主要关注指标的技术口径,如计算公式、SQL等,还有监控规则、血缘关系等。
2、指标开发依托农业银行数据中台丰富的数据资产积累,以维度建模思想为理论基础,指标中心提供自助式、一体化、所见即所得的指标服务,实现了指标口径可解释、血缘可追溯、明细可查询,规范指标口径与加工链路,推进标准化、结构化的指标构建,从根本上解决了定制开发带来的落地时间长、依赖数据工程师等问题,提升了指标服务能力。
指标自助加工过程
以下是指标开发的具体步骤,通过这些步骤,数据分析师和数据工程师可以实现零代码的快速开发。
3、指标运营指标投产后,可能存在因数据质量、加工逻辑等问题导致的指标数据不准确的情况,为此指标建设团队添加了指标监测模块,将监测条件配置在指标定义中,可以实现规则的可配置和实时监控,确保能够在第一时间发现指标异常情况,有效降低业务影响。
为全面掌握指标的运行及评价情况,指标建设团队增加了指标的后评价属性,包括各指标的最新日期、访问量、下载量、访问用户量、用户评价、质量监测结果等,并通过系统层面对接获取基础数据,进行相关数据展示,供指标管理人员进行分析。
数据服务是基于用户需求产生的,而业务需求是动态变化的,部分指标可能不再和当前的业务规则相匹配。
对于此类指标,指标体系的管理规范中制定了指标下线流程,即指标运营团队通过访问分析等方式对指标进行后评价,提出对访问量较少指标的下线申请,经业务方充分评估后,通知各相关方后对指标进行下线。
截至目前,农业银行已建成数千个指标,覆盖个人、对公、网金等多个业务条线,包含存贷款、掌银月活、个人客户AUM、不良率、信用卡活跃客户等各条线的核心指标,为各级经营管理人员提供了方便、灵活、快捷的数据服务,有效地辅助管理层做出经营决策。
未来,指标建设团队将在沉淀复用指标数据资产、提升指标体系服务能力等方面不断优化提升,更高效地为业务赋能。
来源:金融电子化作者:中国农业银行研发中心 苏强、魏超、张晶
了解更多指标内容,欢迎点击阅读:
<END>
1、企业数据中台介绍及建设方案(PPT)
2、数据治理体系架构设计方案(PPT)3、大中型国有企业数字化转型方法论(PPT)4、2万字详解数据仓库数据指标数据治理体系建设方法论5、数据标签的分类、设计及实现方法6、企业BI项目蓝图规划建设方案7
9、8000字详解银行业数据治理架构体系搭建10、华为数字化转型的实践方案11、企业数据资产盘点原则与方法12、
数据学堂